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Abstract

Cancer immunotherapy by checkpoint blockade (ICB) is effective for various cancer types,
yet its clinical use is encumbered by a high variability of patient response. Several studies
have reported that the number of non-synonymous mutations (Tumor Mutational Burden,
TMB), can predict patient response to ICB. This belief has become widespread and led to the
FDA approval of immunotherapy patient prioritization based on TMB levels. The notion that
TMB is predictive of response to immunotherapy is rooted in the neoantigen theory which
stipulates that cancer-specific mutations can form neoantigens, which can be recognized by
the immune system. Hence, the more mutations a tumor has, the more likely the immune
response can be triggered. Here we revisit the data underlying the reported TMB/ICB
response association and the neoantigen theory. First we assembled the largest pan-cancer
dataset of immunotherapy patients with sequencing and clinical data. Surprisingly, we find
little evidence that TMB is predictive of response to ICB. We demonstrate that associations
similar to the ones reported previously can be observed in shuffled data, suggesting that
previous studies suffered from the lack of correction for multiple hypotheses testing and
confounding disease subtypes. Second, we revisit the neoantigen theory and demonstrate
that a simple mathematical model can be consistent with both immunogenicity of
neoantigens and the lack of association between TMB and response. Our analysis shows that
the use of TMB in clinical practice is not supported by available data and can deprive
patients of treatment to which they are likely to respond.

elLife assessment

In this study, the authors discuss the relevance of the tumor mutational burden
(TMB) as an appropriate predictive biomarker for the effectiveness of
immunotherapy. The study offers important findings that will contribute to current
dialogues around the biomarkers used for therapy in cancer (and perhaps, other
diseases). This is an area of substantial controversy, and the authors have gone to
great lengths to support their claims with convincing evidence.
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Introduction

Immune checkpoint blockade (ICB) treatments such as anti-CTLA-4 and anti-PD1, which
target regulatory pathways in T-lymphocytes to enhance anti-tumour immune responses,
have already proven to elicit durable clinical responses for some patients (1-4). However,
the genetic determinants of response to immunotherapy have yet to be found. Several
studies (5-9) suggested that Tumour Mutational Burden (TMB), computed as the total
number-(")f"honsynonymous somatic mutations, is correlated with response to
immunotherapy in cancer. The underlying hypothesis posits that a fraction of
nonsynonymous mutations become exposed as epitopes and constitute neoantigens, which
can trigger an anticancer response by the immune system. The association between high
has been widely reported in the scientific literature and the media. As a result, TMBis
currently discussed as the most clinically advanced biomarker of response to immune
checkpoint blockade (15, 16), and the FDA approved the use of TMB to identify patients most

further stratify patients most likely to respond to immunotherapy. Our analysis focuses on
TMB itself, as this is the most widely used and only FDA-approved measure.

Results

Data aggregation

To evaluate the association of TMB with response to ICB across a broader range of cancer
types, we aggregated and analysed data for 882 immunotherapy patients with publicly
available pre-treatment whole-exome sequencing data (referred below as CPI800+, Table S1
and Material and Methods). We included patient-level data from an aggregate of early
seminal studies (20) as well as recent clear cell renal cell cancer (21, 22), non-small cell lung

dataset examined, we retrieved TMB levels and survival data (Progression-Free Survival
(PFS) or Overall Survival (0S)) for each patient. The original studies provided response
classification for most patients.

We also leveraged 1283 patients (termed CPI1000+) who underwent immunotherapy (26),
have unified TMB (n=1083) and response definition, as well as survival measures for some
patients (n=545 with OS data). Furthermore, we obtained gene panel data (MSK-IMPACT) for
1662 patients (Table S1) who underwent immunotherapy. To the best of our knowledge,
together this dataset constitutes the largest pan-cancer aggregate of ICB-treated patients with
sequencing and clinical data, which allow a robust unified statistical assessment of TMB as a

predictor of ICB response

Is TMB associated with response after treatment?

First, we compared the TMB in patients that have been classified as responders and non-
responders based on a number of clinical characteristics. All datasets show not only a
considerable overlap in TMB between responders and non-responders, but the lack of
considerably elevated TMB for responders and a large range of TMB values in each group.
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Consistent with previous studies we find no difference in TMB between responders and
nonresponders for major cancer types (clear cell Renal Cell Carcinoma, Head and Neck
Squamous Cell Carcinoma and Breast Cancer), with only melanoma (mell and mel2, p=0.04
p=0.04) and non-small cell lung cancer datasets (lung1 and lung2, p=8.3x10"% and p=7.7x10"3)
yielding significant differences as reported earlier (9, 20, 21, 24, 27) (Figure 1 and Figure
S1A). Analysis in CPI1000+ revealed similar results, "};e'f'édiaré'&éiuf:ancer, and bladder
cancers showed significance of elevated TMB for responders (p=0.044 and p=5.4x10",
respectively) (Figure S1B). We also found, consistent with previous studies, that this small
elevation of TMB for responders is due to confounding effects of cancer subtypes, i.e. due to
the different response rates of cancer subtypes with different TMB ranges (see
Supplemental Text). When we revisit a study that reported pan-cancer correlation between
response rate and TMB (12, 14), we found that association was driven largely by overall high
response in melanoma and -s"ﬁ'btypes of colorectal cancer (MSI+) with extreme differential
response (see Supplemental Text). No association between TMB and response rate across
all other cancer types is present in available data.
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Figure 1:

TMB and response to ICB

Association of TMB with response to ICB across five cancer types from CPI800+ (the largest co-
horts of each cancer type are plotted here, the others are shown in Figure S1A). Only
melanoma and non-small cell lung cancer have a significantly different TMB between respon-
ders and non-responders. ccRCC: clear cell Renal Cell Carcinoma, HNSCC: Head and Neck
Squamous Cell Carcinoma; NSCLC: Non Small Cell Lung Carcinoma

We also examined potential correlations between TMB and survival, rather than using a
binary response variable (Figure 2). Strikingly, plots of survival versus TMB do not show a
visible correlation, trend or TMB cutoff that could differentiate longer and shorter surviving
patients. There is a considerable and non-diminishing fraction of patients with long survival,
even for lower ranges of TMB values. As we demonstrate below, attempts to find a TMB
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cutoff value to differentiate long- and short-survivals on such data can be prone to
misinterpretation and require careful correction for multiple hypothesis testing.
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Figure 2:

TMB association with progression-free survival post-
immunotherapy

Plots of progression-free survival and TMB for melanoma and lung cancer ICB cohorts show
the lack of correlation or of an obvious TMB cutoff.

Next we investigated whether (i) small differences in TMB between responders and non-
responders for some cancer types can be of clinical use, even when p-value>0.05; (ii) there is
a potential TMB cutoff that can predict groups of patients with a significant difference in
survival; (iii) these clinical data can be reconciled with the neoantigen theory.

TMB is a poor predictor of response

The key component for validating a biomarker is acceptable classification accuracy, i.e. the
biomarker’s capacity to correctly classify a patient’s response (28). ROC curves analysis
(Figure 3A and 3B) is a standard tool used across disciplines fo'I:"I"neasuring the quality of a
predictor; it provides a comprehensive quantification of specificity and sensitivity over all
possible cutoffs, with the Area Under the ROC Curve (AUC) being an aggregate measure of
predictor performance (AUC=0.5 for a predictor performing as well as random). Our ROC-
curve analysis shows the (i) lack of a clear TMB cutoff that could be used in the clinic; (ii)
poor performance of the TMB-based predictor of response to ICB, as evident from the low
AUC in most datasets: mell and mel2 yielding of 0.62 and 0.59, and lung2 has an AUC of 0.68.
Lungl, however, has the highest AUC of 0.85, which, as we show below, is still insufficient to
select patients for ICB. ROC curve analysis on CPI1000+ cohort, with unified TMB, also shows

a similarly poor AUC of 0.6 (Figure S2).
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Using a poor predictor for treatment decisions can lead to patient misclassification, i.e.
patients who could benefit from the therapy would be deprived of it (responders below the
TMB threshold), and patients who get the treatment but don’t benefit from it (non-
responders above the threshold). To quantify the shortcomings of TMB-based selection of
patients for treatment we computed the proportion of misclassified patients based on the
recent FDA approval of 10 mutations/Mb threshold to select patients for ICB (Figure 3C and
Figure 3D). We find that, on average across the non-small cell lung cancer and melanoma
datasets, 62% of responders were below the treatment prioritization threshold and 19% of
non-responders were above. While these misclassification rates vary across datasets,
fractions of potential responders under the TMB threshold remain high. Moreover, the poor
predictive power of TMB indicates that current efforts of choosing a single TMB measure for
all cancer types (so call “harmonizing” TMB) would not address fundamental limitations of
TMB as the biomarker of response. Indeed, our ROC analysis shows that even the optimal
cutoff (Youden index associated cutoff) for each dataset would result in approximately 25%
of responders ending up below the treatment prioritization threshold and thus discouraged
from receiving a potentially efficacious and life-extending treatment (Figure 3D). As such,
the main challenge in using TMB in the clinic is the inherently poor association between
TMB and response to treatment.

TMB cannot detect groups of patients with different
survival post-immunotherapy

To evaluate the use of TMB for prioritizing patients, and to go beyond the binary response
classification, we examined an association between TMB and survival time (Overall Survival,
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0S and Progression-free Survival PFS). Since survival data is “censored” i.e. only lower
bound on survival is known for some patients that didn’t show progression or dropped out
of the study, standard correlation-based methods cannot be used to evaluate such
association. Nevertheless, groups of patients can be compared using survival analysis
methods. Hence we tested whether it is possible to find a TMB threshold that can separate
patients into groups with significantly distinct survival.

Scatterplots of survival versus TMB (Figure 2, Figure S3A and S3B) show no evidence of such
TMB threshold. Nevertheless, several studies reported (6, 8) a seemingly statistically
significant difference in survival between patients below and above a particular threshold.
One caveat of this approach is that choosing the threshold value suffers from inherent
multiple hypothesis testing, i.e. when the TMB thresholds have been selected among
numerous possible alternatives multiple hypotheses are being tested. This inherent multiple
hypothesis testing would require further correction of the p-values; a step that is missing in
other studies. However, standard approaches (e.g., Bonferroni correction, FDR correction)
for multiple hypotheses testing could be too stringent because the hypotheses generated by
comparing survival in two groups at multiple TMB thresholds are not independent.

To address this challenge we used a randomization approach (29, 30), similar to earlier

and censored labels unchanged for each patient. First, for each dataset (real or randomized)
we determined the optimal threshold that maximizes the difference in survival for groups of
patients above and below the threshold. This was done by trying all possible threshold
values, computing the difference in survival by logrank test for the groups above and below
the threshold; and selecting the optimal threshold that maximizes the difference in survival
(i.e. minimize the logrank p-value). Second, we compared the optimal p-value for the real
data, preqp, With the distribution of those for shuffled datasets f(psp,p and computed the
corrected p-value as the fraction of shuffled datasets below the real (pgpyf < Preap) (Figure
4A).

Randomized datasets

Figure 4:
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Randomization analysis results in the lung cancer cohorts and stratification by subtypes (p-values < 10710 not shown).
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Applied to the melanoma and lung cancer data, this approach (Figure 4B and Figure 4C)
shows that the majority (~60-70%) of randomly shuffled datasets produced pgp,below the
standard 0.05 threshold, creating a seemingly significant TMB-survival association and
emphasizing the need for multiple hypothesis correction. Applied to lung, melanoma and
across CPI1000+ dataset (Figure S4), our correction for multiple hypothesis testing reveals
the lack of a significant TMB threshold that can classify patients into groups with different
survival. In particular for lung cancer, for which we previously observed a significant
association between TMB and response (Figure 1A), we obtained no significant threshold for
TMB. We also ran our analysis using OS (for datasets where both OS and PFS are available:
mell, mel2 and lungl) instead of PFS as an endpoint and showed similar results, suggesting
that survival definitions do not drive the results of our analysis (Figure S5A and S5B).

We further obtained consistent results for 1662 patients of MSK-IMPACT cohort treated with
ICB but genotyped with gene panels rather than whole-exome sequencing (Figure S6). Most
of the 10 cancer types tested had a non-significant p-value including colorectal cancer
(p=0.088) and melanoma (p=0.093) which have marginally significant p-values, except for
non-small cell lung cancer (p=0.034). This study did not provide additional information such
as tumor location for melanoma, Microsatellite Instability (MSI) status for colorectal cancer,
or COPD for non-small cell lung tumors, which, as we showed above, can confound the
association of TMB with response 24 (24, 32). Taken together, our analysis shows the lack of

TMB thresholds that can establish a high-TMB group with a significantly longer survival.

Model reconciles neoantigen theory and data

Neoantigen theory is widely used to argue that cancers with high TMB are more likely to
elicit an immune response upon ICB. Although our results show the lack of such
dependence, we demonstrate that the effect we observe can nevertheless be explained by a
simple mathematical model of neoantigens and immunogenicity (Figure 5A).

Figure 5:
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Our model aims to explain (i) the lack of association between TMB and response; (ii)
response by cancers with even very low TMB; and (iii) the lack of detectable selection
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against neoantigens(33). Response to ICB treatment requires that cancers elicits an immune

response, hence the probability of clinical response can be written as
P{clinical response} = P{clinical response |immune response} - P{immune response},

Where P{clinical response|immune response} is the probability of clinical response, given
that cancer elicits an immune response. Since clinical response is complex and depends on
many variable we focus on the probability of cancer to elicit an immune response P{immune
response}. For simplicity assume that every non-synonymous mutation has the same
probability p <1 to be immunogenic (i.e. to be expressed, presented, interact with MHC, and
trigger an immune response). Due to immunodominance, only a few k.;; immunogenic
mutations are sufficient to elicit a full immune response. Hence, the probability for a cancer
with N (=TMB) mutations to elicit an immune response is then the probability of having
mutations:

N-k k

P{immune response} = pk(l -p) C,

N

k

crit

Figure 5B and Figure S7 show P{immune response} as a function of N (TMB) for a range of p
and k., values. The model shows two different behaviors. If individual mutations are unlikely
to be immunogenic p « 1, e.g. due to a low probability of being presented,, the probability of
response increases gradually with TMB. The neoantigen theory generally expects such grad-
ual increase in immunogenicity of cancer with TMB. Yet, available data (Figure 2) don’t show
such a trend.

On the contrary, if single mutations are more likely to be immunogenic p~0. 1, the
probability of response quickly saturates for TMB > 1/p~10, making such tumors respond to
ICB irrespective of TMB, as we observed above in clinical data. In the case of k..;; =1, even a
single immunogenic mutation can trigger the response yielding P{immune response} =1 - (1
- p)N'1= 1 - exp(- pN). It is easy to see that for this case P{immune response} saturates when
the total number of mutations approaches N~1/p. In the data we observe about the same
probability of response to ICB for cancers with as little as 10-20 mutations (Figure 1). To
achieve about constant P{immune response} for N > 10 — 20 mutations, one needs p~0. 1 for k
=1, and p~0. 2 for k.. > 1. Together this argues that individual non-synonymous mutations
have considerable chance for triggering an immune response, allowing cancers with as little
as mutations to be treated with ICB.

0.64 for strong binders) and k. = 1-2, the probability of eliciting a response quickly
approaches 1 for TMB>10 and stays constant and independent of TMB. (Materials and
Methods). The model further suggests that for the regime consistent with the data
(Pimmunogenic=0-2-0.6; K¢pie=1-2) (1) >90% of tumours with as little as 10 non-synonymous
mutations are immunogenic; (ii) when 90% of tumours are immunogenic they have on
average as few as 2 immunogenic mutation. Such saturation of immunogenicity with low
TMB in our model suggests that further immunogenic mutations experience weak negative
selection (i.e. threshold epistasis), i.e. weak if any immunoediting(35). These results are also
consistent with recently observed immunodominance hierarchies of the T cell responses
(36): low TMB tumours can mount responses as robust as high TMB tumours since only a

small subset of neoantigens are targeted by T cells.
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Furthermore, our model also explains a puzzling observation that immunoediting, i.e.
negative selection against immunogenic mutations, is inefficient, allowing tumors to
accumulate a high TMB (33, 37). Indeed, once a cancer accumulates mutations making it
immunogenic, additional mutations incur at no additional selective disadvantage i.e. show
“the epistasis of diminishing return”, and hence accumulate as neutral or weakly damaging
passenger mutations (35, 38, 39). Moreover, according to this argument, a cancer should
develop means to supﬁféé'émtﬁé"immune response early in its development, a prediction that
can be tested in future studies of cancer clonal evolution. Taken together, our model and
analysis of the available data indicate that cancer with even very few mutations can be
immunogenic, suggesting that patients with low TMB might also mount robust immune
responses, as has been recently shown for paediatric patients with acute lymphoblastic
leukaemia (36).

Discussion

Tumor Mutational Burden, a measure of the total somatic nonsynonymous mutations in a
tumor, recently became a popular biomarker of response to ICB, notably because of its
relative simplicity to assess.

However, this paradigm is largely based on a series of early papers that examined response
in melanoma and lung cancer that we show here to be potentially problematic statistically
and further confounded by tumor subtype. Several recent studies have also reported poor
association of TMB with response for specific cancer types, and highlighted TMB and its
expression/presentation-based derivatives as problematic for clinical cohort classification
(27). In particular for melanoma, recent analyses (24) and our results indicate that the site
location can explain the observed association between TMB and response to ICB. For lung
cancer, our analysis points to the possibility that co-occurrence with COPD may explain the
association between TMB and response to ICB among smokers. Overall we demonstrate that
while most cohorts and cancer types show the lack of association of TMB and response or
survival, the remaining statistical signal in some cohorts can arise due to confounders such
as clinical subtypes. Future studies can examine the underlying biology of TMB and
neoantigens, aiming to explain the better responses to ICB in certain clinical and cancer
subtypes.

Critically, even if responders show significantly but slightly elevated TMB, such associations
do not imply the suitability of TMB as a biomarker of response. In particular, we show that
no TMB cutoff can distinguish groups of patients with significantly different survival rates.
Besides, we show that TMB has poor accuracy as a classifier of response, even in the best-
case scenario (Youden optimal cutpoint). This result challenges the FDA approval of TMB for
prioritizing patients for ICB. If implemented, such TMB-based clinical decision making
would deprive many patients who can benefit from ICB from receiving a life-extending
treatment.

An ICB clinical trial that used FDA-approved TMB threshold (KEYNOTE-158) (40) has focused
on rare cancers, excluding melanoma and lung cancer. While claiming a higﬁéf response
rate among high-TMB patients, the trial observed little, if any, difference in overall survival
of high-TMB and other patients, putting in question the clinical use of TMB-based

prioritization.

We also put forward a simple model that reconciles our findings with the neoantigen theory.
Our model shows that if each mutation has a high chance of triggering an immune response,
then only a few new mutations make a cancer immunogenic, consistent with the observed

Carino Gurjao et al., 2023. eLife https://doi.org/10.7554/eLife.87465.1 9 of 20


https://elifesciences.org/
https://doi.org/10.7554/eLife.87465.1

v eLife

immunodominance i.e. the immune response is mounted against only a few of the
neoantigens. This result is also consistent with the observed lack of association between
antigen density and T-cell presence previously reported (41). Moreover, our model suggests
that most cancers are immunogenic, arguing that failures of ICB likely arise due to factors
independent of cancer immunogenicity. Quantitative measurements (42) and modelling of

neo-antigenic effects can deepen our understanding of cancer development and response to
immunotherapy.

Although attractive and scalable, TMB does not consider the effect of specific mutations
(missense, frameshift etc), their presentation and clonality (19), nor the state of the tumour,
its microenvironment, and interactions with the immune syg{em that can be integrated into
potentially better predictors of response to ICB (43, 44). For the biology of oncoimmunity, our
analysis suggests that, contrary to the neoantigeﬁ':[h'ébry, cancer immunogenicity does not
increase with the growing load of neoantigens, and that clinical subtypes can underlie better

response to ICB.

Altogether, our analysis indicates that low TMB should not be used to deprive otherwise
eligible patients for immunotherapy treatment, and stimulates further research into other
determinants of response to immunotherapy.

Material and Methods

Immunotherapy study population

CPI800+ was formed of eight independent WES cohorts (n=882, detailed in Table S1). The
TMB and clinical annotations were not modified from the original studies. Post ICB
sequenced samples were excluded from our analysis. In addition, gene panel datasets
(n=1662, detailed in Table S1) were identified from cbioportal (45).

TCGA data

Lung cancer TCGA data were also retrieved from chioportal (45), and additional clinical

based on the standard spirometric classification, i.e. post-bronchodilator ratio of forced
expiratory volume in one second (FEV1) and forced vital capacity (FVC) below 70%.

Statistical analysis

We used R version 3.6.2 to perform statistical analyses. Two-group comparisons were
evaluated by a two-sided Mann-Whitney U test unless otherwise indicated. P < 0.05 was
considered statistically significant.

Code availability

The R code and data used to reproduce the analysis and figures from the paper are available
on GitHub https://github.com/mirnylab/TMB_analysis
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Reviewer #1 (Public Review):

In their manuscript entitled: "Is tumor mutational burden predictive of response to
immunotherapy?", Gurjao and colleagues discuss the use of tumor mutational burden (TMB)
as a predictive biomarker for cancer patients to respond to immune checkpoint blockage
(ICB). By analyzing a large cohort of 882 patient samples across different tumor types they
find either little or no association of TMB to the response of ICB. In addition, they showed
that finding the optimal cutoff for patient stratification lead to a severe multiple testing
problem. By rigorously addressing this multiple testing problem only non-small cell lung
cancer out of 10 cancer types showed a statistically significant association of TMB and
response to ICB. Nevertheless, it is clearly shown that in any case the rate of misclassification
is too high that TMB alone would qualify as a clinically suitable biomarker for ICB response.
Finally, the authors demonstrate with a simple mathematical model that only a few strong
immunogenic mutations would be sufficient for an ICB response, thereby showing that also
patients with a low TMB score could benefit from immunotherapy. The manuscript is clearly
written, the results are well presented and the applied methods are state-of-the-art.

Reviewer #2 (Public Review):

The manuscript points out that TMB cut-offs are not strong predictors of response to
immunotherapy or overall survival. By randomly shuffling TMB values within cohorts to
simulate a null distribution of log-rank test p-values, they show that under correction, the
statistical significance of previously reported TMB cut-offs for predicting outcomes is
questionable. There is a clinical need for a better prediction of treatment response than TMB
alone can provide. However, no part of the analysis challenges the validity of the well-
known pan-cancer correlation between TMB and immunotherapy response. The failure to
detect significant TMB cut-offs may be due to insufficient power, as the examined cohorts
have relatively low sample sizes. A power analysis would be informative of what cohort
sizes are needed to detect small to modest effects of TMB on immune response.

The manuscript provides a simple model of immunogenicity that is tailored to be consistent
with a claimed lack of relationship between TMB and response to immunotherapy. Under
the model, if each mutation that a tumor has acquired has a relatively high probability of
being immunogenic (~10%, they suggest), and if 1-2 immunogenic mutations is enough to
induce an immune response, then most tumors produce an immune response, and TMB and
response should be uncorrelated except in very low-TMB tumors. The question then
becomes whether the response is sufficient to wipe out tumor cells in conjunction with
immunotherapy, which is essentially the same question of predicting response that
motivated the original analysis. While TMB alone is not an excellent predictor of treatment
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response, the pan-cancer correlation between TMB and response/survival is highly
significant, so the model's only independent prediction is wrong. Additionally, experiments
to predict and validate neoepitopes suggest that a much smaller fraction of nonsynonymous
mutations produce immune responses1,2.

A key idea that is overlooked in this manuscript is that of survivorship bias: self-evidently,
none of the mutations found at the time of sequencing have been immunogenic enough to
provoke a response capable of eliminating the tumor. While the authors suggest that
immunoediting "is inefficient, allowing tumors to accumulate a high TMB," the alternative
explanation fits the neoepitope literature better: most mutations that reach high allele
frequency in tumor cells are not immunogenic in typical (or patient-specific) tumor
environments. Of course, immunotherapies sometimes succeed in overcoming the evolved
immune evasion of tumors. Higher-TMB tumors are likely to continue to have higher
mutation rates after sequencing; increased generation of new immunogenic mutations may
partially explain their modestly improved responses to therapy.
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